Object detection on robosoccer environment using convolution neural network

نویسندگان

چکیده

Robots with autonomous capabilities depend on vision to detect and interact objects their environment. In the field of robotic research, one focus areas is robosoccer platform that being used implement test new ideas findings computer decision making. this article, an efficient real-time object detection algorithm employed in a simulation environment by deploying convolution neural network Kalman filter based tracking algorithms. This study's objective classify nao, ball, goalpost as well validate nao ball without human intervention from initial frame last frame. comparison existing methods, proposed method robust fast identifying three classes namely speed 1.67 FPS mAP 95.18%. By implementing approach, soccer playing robots can make appropriate decisions during game play.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Object Detection for Semantic SLAM using Convolution Neural Networks

Conventional SLAM (Simultaneous Localization and Mapping) systems typically provide odometry estimates and point-cloud reconstructions of an unknown environment. While these outputs can be used for tasks such as autonomous navigation, they lack any semantic information. Our project implements a modular object detection framework that can be used in conjunction with a SLAM engine to generate sem...

متن کامل

Quad-pixel edge detection using neural network

One of the most fundamental features of digital image and the basic steps in image processing, analysis, pattern recognition and computer vision is the edge of an image where the preciseness and reliability of its results will affect directly on the comprehension machine system made objective world. Several edge detectors have been developed in the past decades, although no single edge detector...

متن کامل

Quad-pixel edge detection using neural network

One of the most fundamental features of digital image and the basic steps in image processing, analysis, pattern recognition and computer vision is the edge of an image where the preciseness and reliability of its results will affect directly on the comprehension machine system made objective world. Several edge detectors have been developed in the past decades, although no single edge detector...

متن کامل

Double-Star Detection Using Convolutional Neural Network in Atmospheric Turbulence

In this paper, we investigate the usage of machine learning in the detection and recognition of double stars. To do this, numerous images including one star and double stars are simulated. Then, 100 terms of Zernike expansion with random coefficients are considered as aberrations to impose on the aforementioned images. Also, a telescope with a specific aperture is simulated. In this work, two k...

متن کامل

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Indonesian Journal of Electrical Engineering and Computer Science

سال: 2022

ISSN: ['2502-4752', '2502-4760']

DOI: https://doi.org/10.11591/ijeecs.v29.i1.pp286-294